Generative AI and Geospatial Data

Catalysts for Digital Transformation

Author:

Dr. Nadine Alameh LunateAl nalameh@lunateai.com Bassam Zarkout
IGnPower Inc.
bzarkout@IGnPower.com

CONTENTS

1	Generative GeoAl Systems3		
	1.1	Data Governance4	
	1.2	Data Ownership 5	
	1.3	Ethics, Equity, Responsible AI and Explainable AI 5	
	1.4	ROI and Business Case 6	
	1.5	Integration with other Environments 6	
	1.6	Resilience and Security	
	1.7	Other Considerations	
2 Drivin		ng Digital Transformation with Generative GeoAl7	
	2.1	DX-Enabling Technologies	
	2.2	Digital Transformation Journey9	
	2.3	Digital Enterprises	
	2.4	How Generative GeoAl Drives Digital Transformation9	
3	Leadi	ng Innovators and Platforms11	
	3.1	Generative GeoAl Platforms11	
	3.2	Innovations in Generative GeoAl12	
4	Gene	rative GeoAl in Action12	
	4.1	Climate Resilience	
	4.2	Disaster Response	
	4.3	Agriculture14	
	4.4	National Security14	
5	Conc	lusion	
6	Biblio	ography 15	
Fı	Figures		
Fig	gure 1-	1: Evolution from GIS to Generative GeoAl3	
Figure 2-1: Digital Transformation and its Enabling Technologies			
Fig	Figure 2-2: How Generative AI drives Digital Transformation10		

The geospatial industry is rapidly evolving, driven by breakthroughs in Generative AI. This technology is transforming how we synthesize diverse geospatial data, from Earth Observation (EO) and IoT sensor streams to socio-economic datasets, enabling faster, smarter decision-making across domains like climate resilience, disaster response, agriculture, and national security. As access to geospatial data improves, Generative AI is emerging as a key driver for converting that data into actionable insights. When paired with geospatial sources, it delivers to stakeholders unprecedented capabilities for real-time insights and proactive decision-making across climate resilience, disaster response, agriculture, and security domains.

This article explores the evolving role of Generative AI in geospatial contexts, spotlighting cuttingedge solutions from tech leaders including AWS, Google Research, IBM, and Microsoft. Readers will gain insights into the business value of these technologies, real-world use cases, and strategic opportunities for applying AI to drive sustainable innovation and global collaboration.

1 GENERATIVE GEOAI SYSTEMS

Generative GeoAl blends geospatial data with advanced Al to automatically create maps, insights, and predictive models. It helps executives identify and visualize patterns, like customer behavior or environmental risks, across locations, speeding up decision-making. It acts as smart assistants that turn complex geographic data into actionable insights and business strategies.

Over four decades, geospatial technology has progressed from static map generation through traditional Geographical Information Systems (GIS), to GeoAl Systems and more recently to Generative GeoAl Systems. This transformation merged sensor outputs, socio-economic metrics, and real-time IoT feeds into unified analytical models. This evolution promises to drive both technical innovation and a collaborative cultural shift: breaking down data silos down, increased collaboration of teams across domains, and accelerated decisions.

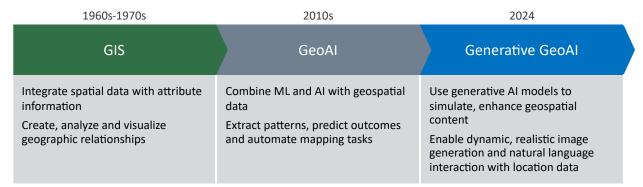


Figure 1-1: Evolution from GIS to Generative GeoAl

GIS Platforms: Traditional GIS platforms were designed primarily for map-based queries, simple overlays, and limited and static spatial analysis. Users depended on siloed desktop software to digitize geographic features, measure distances, and create thematic visual maps for urban planning, land management, and infrastructure development.

GeoAl Systems: The advent of GeoAl in the 2010s introduced machine learning (ML) and computer vision into spatial workflows. Pattern-recognition algorithms (satellite imagery, sensor streams, and more) automated object detection, such as buildings, roads, or flooded risk areas. Convolutional neural networks (CNNs) enabled real-time feature extraction, while unsupervised clustering and anomaly detection models highlighted unexpected changes in land cover or traffic patterns. This shift allowed organizations to move beyond static map products toward near-real-time alerts and predictive analytics and outcomes, strengthening applications in disaster response, urban monitoring, and precision agriculture.

Generative GeoAl Systems: Starting in 2024, Generative Al reshaped spatial analysis by layering advanced language models and generative networks on top of geospatial data. These emerging Generative GeoAl systems analyze, interpret and act upon complex spatial geometry, real-time sensor streams, and socio-economic data. With such systems, instead of preconfigured workflows, users interact with "Queryable Earth" interfaces using natural-language queries like "Where did soil moisture drop below 30% last spring?" or "Map high-risk flood zones near critical assets." These systems parse such requests, ingest multimodal data streams (IoT data, imagery, vector maps), and generate maps, charts, and written explanations in an integrated response. This approach transforms how teams consume geospatial intelligence, making insights accessible to stakeholders without deep GIS expertise.

1.1 DATA GOVERNANCE

Data governance underpins reliable Generative GeoAl in geospatial, IoT, and digital-twin contexts. It defines clear rules about how organizations collect, validate, store, and retire data, from raw Earth observation to Al-generated outputs. Policies on provenance, quality, traceability, and retention ensure model accuracy and regulatory compliance, while privacy and security measures protect sensitive location information.

- Provenance: record data sources, timestamps and transformation history
- Quality: automate and enforce validation and error checks
- Traceability: maintain end-to-end audit trails from raw inputs to AI outputs
- Access: enforce role-based, least-privilege permissions at scale
- Encryption/anonymity: protect location attributes and identities
- Geospatial Metadata: use ISO 19115 [1] schemas for interoperability
- Lifecycle management: automate retention, archiving, and legally defensible disposal

Implementing these governance practices fosters trust, transparency and compliance in Generative GeoAI workflows. Robust controls and clear policies enable secure, scalable pipelines that drive more accurate digital twins and IoT analytics. By embedding framework-based governance into every stage, from data ingestion to AI deployment, enterprises can accelerate innovation, meet regulatory requirements, and confidently harness geospatial insights for strategic advantage.

1.2 DATA OWNERSHIP

Generative AI accentuates the need for clearer data owning, sharing and governance policies, as seen in the UN-GGIM report's vision for future geospatial ecosystems [2]. The report calls for a shift from static spatial infrastructures to dynamic, rights-based legal ecosystems. These ecosystems must support responsible data innovation, algorithmic transparency, and cross-border coordination in a knowledge-centric environment. The focus moves beyond legal title to equitable access, transparency, and ethical governance.

Data ownership defines who holds legal title, stewardship responsibility, and accountability for geospatial information as digital public infrastructure. The UN-GGIM position paper views geospatial data as a digital public good under sovereign stewardship. Member States and designated agencies must guarantee data quality, integrity, and provenance through metadata management and version control. Licensing authority combined with national and multilateral reuse regulations ensures legal clarity and trust. Embedding principles of agility, inclusivity, sustainability, ethical stewardship, and collaboration codifies rights and responsibilities. This framework enables dynamic interoperability and cross-sector integration with environmental, social, and economic data.

Agile legal ecosystems are needed to streamline decision-making and liability, especially during crises. Defined custodial duties accelerate emergency response, resilience planning, and sustainability (SDG) monitoring. Algorithmic transparency and cross-border coordination foster innovation in digital twins, IoT, and AI, which are reshaping how geospatial data is generated. Dynamic policy and legal instruments adapt to emerging technologies and evolving data principles. This approach strengthens global development outcomes through trusted geospatial data flows.

1.3 ETHICS, EQUITY, RESPONSIBLE AI AND EXPLAINABLE AI

As Generative AI workflows ingest petabytes of satellite imagery, IoT sensor streams, and demographic records (often of varying quality and accessibility), enforcing ethical and technical guardrails is essential to deliver reliable digital twin models and geospatial insights. Adopting FAIR principles (Findable, Accessible, Interoperable, Reusable) provides a consistent framework for managing data, tracking provenance, and enabling cross-organizational collaboration.

Documenting source, licensing, and usage rights reduce legal ambiguity and uncertainty and enhances reproducibility in complex AI systems. Mitigating dataset bias through representative sampling and continuous audits fosters equitable model outcomes, particularly for underconnected regions where over 90 percent of the population lacks internet access [3].

To balance open-data initiatives with privacy and governance requirements, organizations should adopt an "open as possible, closed as necessary" approach, aligning with GDPR, HIPAA, and other regional regulatory mandates. Explainable AI techniques, such as feature attribution and model-agnostic interpretability tools, enables stakeholders to understand algorithmic decisions and reinforces regulatory compliance and public trust [4].

By applying above controls, enterprises can reduce operational risks, drive confident adoption of geospatial digital twins, and unlock actionable intelligence for strategic decision-making.

Embedding these standards throughout the project lifecycles fosters organizational resilience, fuels AI innovation, and ensures that geospatial intelligence serves communities effectively.

1.4 ROI AND BUSINESS CASE

Forrester's Drive ROI with AI report [5] identifies three core metrics for assessing AI investments, namely decision-cycle time, predictive accuracy, and manual-effort savings. In a geospatial digital-twin use case for urban flood management, cutting decision-cycle time by 30 percent can accelerate emergency response by 48 hours, avoiding up to \$2 million in damage and reducing contingency budgets by 10 percent. Improving forecast accuracy by 15 percent, for example, in crop-yield predictions, enabling farmers to optimize inputs and boost revenue by 5 percent. Automating 40 percent of manual tasks in satellite-image annotation frees 4 full-time equivalents, yielding \$400K in annual labor savings.

A clear, metric numbers-driven business case that maps directly to financial outcomes (e.g. time-savings to consulting-fee reductions, accuracy gains to lowered reserve costs, and effort savings to head-count reallocation) not only secures executive buy-in but also de-risks deployments, aligns teams on shared objectives, and paves the way for scalable, sustainable digital transformation.

1.5 Integration with other Environments

Integration of Generative GeoAl into existing IT and OT environments must be seamless (overcoming the traditional integration challenges) using open standards such as OGC [6] and ISO/TC211 [7], and modular APIs to ensure interoperability with GIS, IoT platforms, digital twins [8], Generative AI models. Incremental rollouts reduce disruption and validate performance in real conditions. Generative GeoAI enriches digital twins by automating geospatial scenario modeling, detecting anomalies, and generating synthetic training data. When paired with IoT feeds, it helps teams ask complex "what-if" queries in plain language and returns validated scenarios in minutes.

Key benefits include:

Faster design cycles: GeoAl can optimize the design of digital assets under multiple constraints. By encoding engineering rules and cost, weight, or energy budgets into a foundation model. For example, teams can ask "Generate the optimal bridge layout for a 30 m span under seismic load" and the model then proposes several designs ranked by cost and resilience, shortening manual design cycles and helping non-engineering stakeholders compare options visually.

Early anomaly detection: Generative GeoAl can process and integrate high-frequency IoT sensor data (temperature, vibration, flow rates) and learn normal behavior patterns, flag potential faults and generate natural-language summaries of the likely cause and impact. Executives can ask, "Show me a ranked list of turbines with abnormal vibration trends" for immediate inspection.

Accelerate model training through synthetic data generation: GeoAl foundation models can create realistic failure scenarios, such as cracked pipes or fouled filters, complete with multisensor signatures. These synthetic datasets enrich digital twin training and reduce model bias, ensuring robust performance in edge cases.

Assist with large-scale digital twin deployment: Automate containerized digital twin creation, validate sensor-to-model mappings, and run initial calibration simulations. Teams can deploy dozens of twins across multiple sites by simply updating a single template, rather than reinventing each project. This "one-to-many" approach shrinks time-to-value and enforces consistency across assets.

By fusing Generative GeoAl with Digital Twins and IoT, organizations gain a unified platform for design optimization, early fault detection, rapid training, and scalable deployment. This synergy empowers senior leaders to make data-backed decisions, reduce operational risk, and accelerate innovation, while keeping technical complexity under the surface.

1.6 RESILIENCE AND SECURITY

Embed resilience and security into every layer. Conduct adversarial testing, validate models under extreme scenarios, and maintain incident-response playbooks. Monitor for drift, patch vulnerabilities, and enforce continuous compliance [9][10].

Explore emerging use cases such as supply-chain optimization, public-health surveillance, biodiversity monitoring, to expand value and future-proof your Generative GeoAl strategy [11].

1.7 OTHER CONSIDERATIONS

Successful implementation of Generative GeoAI will depend on deliberate capacity and skill development, reimagined training for analysts, data scientists, and decision-makers through workshops, certifications, and hands-on labs. Cultivating cross-functional teams that bridge domain expertise, AI methods, and operational insights accelerates adoption and drives real-world impact [12][13].

A robust strategy for generative GeoAI requires open infrastructure, shared benchmarks, and multidisciplinary partnerships. Equitable data curation and provenance tracking ensure fairness and reliability in model training. Prioritizing spatial reasoning, AI ethics, and no-code workflows empowers users. Piloting AI-powered digital twins in high-impact domains lays the groundwork for scalable, trustworthy solutions [14].

2 Driving Digital Transformation with Generative GeoAl

The subject of Digital Transformation (DX) has been debated extensively in the public domain for a long time. The Industry Internet Consortium (part of the DTC) defines [15] digital transformation as the innovative, principled and strategic application of digital and connected technologies, coupled with organizational and process restructuring, to generate new value for the organization and its stakeholders.

The drivers for digital transformation include:

- Evolving customer expectations,
- Rising competitive threats, especially from digital-native competitors,
- Need for more operational efficiencies and cost savings across value chains,
- Advanced AI and analytics tools that can unlock further value from big data,

- Expansion of digital ecosystems and the opportunity to use them,
- Growing market pressures to meet sustainability goals.

Organizations seeking to digitally transform aim at improving their operation and their ability to create and deliver products and services more efficiently. The aim may be more strategic to focus on customer-centric and redefined outcomes.

2.1 DX-ENABLING TECHNOLOGIES

A wide range of emerging and emergent digital and connected technologies • are leading to innovative new types of innovative solutions • across multiple domains, which in turn enabling and empower Digital Transformation (figure 2-1).

- Observation Geospatial Systems collect, analyze, and visualize Earth data using satellites, drones, and sensors to monitor environmental and human activity.
- Generative AI creates original content, text, images, code, or music, by learning patterns from massive datasets and user prompts.
- Digital Twins provide virtual replicas of physical objects or systems that simulate real-world behavior using real-time data for analysis and optimization.
- Unmanned Aerial Vehicles (UAVs) feature remotely piloted or autonomous aircraft used for surveillance, delivery, mapping, and more.

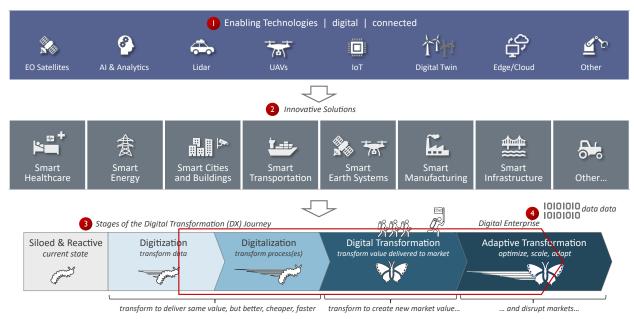


Figure 2-1: Digital Transformation and its Enabling Technologies

These innovative solutions improve service delivery, opens new revenue streams, and enhance customer satisfaction.

2.2 DIGITAL TRANSFORMATION JOURNEY

The Digital Transformation journey unfolds through three main stages 6:

Digitization focuses on converting analog data of core processes into digital form and integrating them into processes. Eliminating reliance on analog data addresses a major source of inefficiencies in work environments.

Digitalization shifts the focus to incorporating digital data into core internal and ecosystem processes, optimizing these processes and integrating them. The main benefits here include streamlined operations, data-driven decision making, and cost reduction.

Digital Transformation leverages the work done during the previous stages and focuses on transforming the value delivered to customers and other ecosystem stakeholders. Outcomes may include new business models and new types of product offerings. The objective is to become customer-centric, leapfrog the competition, enter new markets, create blue ocean markets, and ensure long-term viability and success.

These phases are interconnected and overlap in certain contexts, however there are distinct differences between them in scope and strategic approach.

2.3 DIGITAL ENTERPRISES

During the DX journey, the DNA of the enterprise evolves, leading to the emergence of the digital enterprise **4**. This transition occurs when the organization achieves significant levels of digitization and digitalization, alongside organizational and cultural changes, and the seamless optimization and integration of physical and digital spaces. Digital enterprises are more valuable, more efficient and more agile.

In digital enterprises, the proliferating digital systems, including geospatial systems, produce massive amounts of data. This data must be captured, processed within processes, protected, exchanged securely with ecosystem partners, and in some cases produced to court. Increasingly important is the need to be able to apply analytics and AI tools to this data and extract insight and new value from it.

The volume of this data, especially geospatial data, is skyrocketing, exhibiting the characteristics of big data, including volume, variety, velocity and value. These characteristics must be catered of throughout the lifecycle of the data. In particular, the value of this data must be assessed, understood and leveraged. For more details about the nature of this value (tangible/intangible, present/future), please refer to the OMG Journal of Innovation article titled Unlocking the Full Potential of Enterprise Data: Managing Valuable Data Assets Through Their Lifecycles. [16]

2.4 How Generative GeoAl Drives Digital Transformation

Generative GeoAl sits at the intersection of geospatial platforms, digital twins, and IoT streams, acting as a powerful catalyst for each stage of digital transformation.

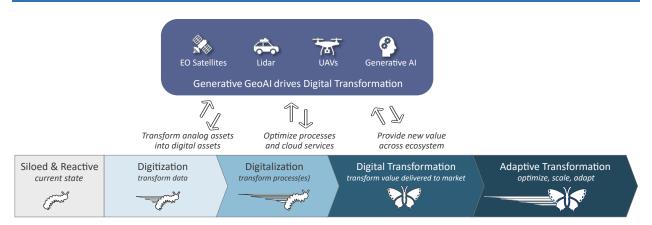


Figure 2-2: How Generative AI drives Digital Transformation

In the *digitization* phase, it automates the conversion of analog assets, such as paper maps, sensor logs, and aerial imagery, into rich digital records. By auto-annotating satellite or drone images, enriching raw sensor feeds with contextual metadata, and synthesizing missing data points, Generative GeoAl accelerates data capture and reduces manual effort, laying a solid foundation for downstream analytics and decision-making.

As organizations progress to *digitalization*, Generative GeoAI seamlessly embeds enriched geospatial data into enterprise workflows, cloud services, and decision-support interfaces. Executives and technical leaders can pose high-level questions, like flood-risk scenarios or crop yield forecasts, via natural-language prompts and receive detailed geospatial simulations and decision-ready visuals in minutes. This tight integration of AI-driven scenario generation into GIS and IoT platforms replaces labor-intensive analytics with automated, scalable processes, enabling teams to act faster and more confidently.

True digital transformation reimagines customer value and ecosystem engagement by introducing entirely new offerings and business models. Generative GeoAl underpins on-demand resilience planning, automated disaster-response briefs, precision-farming advisory services, and secure defense intelligence dashboards. Foundation models trained on diverse datasets, including Earth Observation, socio-economic statistics, and live sensor feeds, unlock blue-ocean market opportunities and help enterprises outpace digital-first competitors. By embedding GeoAl at the core of products and services, organizations shift from reactive data analysis to proactive intelligence, delivering personalized experiences at scale.

Note: The financial impact of Generative GeoAl can be significant. McKinsey estimates that geospatial Al can unlock roughly \$100 billion in field-level operational efficiencies and \$150 billion across enterprise functions such as R&D, marketing, and supply-chain optimization [17]. Generative GeoAl benefits drives this value by compressing project timelines from months to days through automated scene generation, lowering data costs via synthetic spectral-band generation (e.g. SWIR, thermal), and reducing false alerts in flood and heat-risk mapping, which saves millions in mitigation expenses. These efficiencies translate directly into accelerated time-to-value and stronger return-on-investment.

Beyond immediate ROI, Generative GeoAI stands to power sustainable innovation. Synthetic multi-spectral datasets generated by AI enable farmers in data-sparse regions to fine-tune water and fertilizer use, improving yields while conserving resources. Ensemble diffusion models simulate multi-year coastal inundation scenarios to guide long-term infrastructure investments, supporting climate action and sustainable-cities goals. These applications illustrate how GeoAI enhances operational performance while advancing environmental and social objectives.

3 LEADING INNOVATORS AND PLATFORMS

This section lists leading providers of Generative GeoAl platforms and summarizes their offerings. This section also outlines the recent innovations in that space.

3.1 GENERATIVE GEOAI PLATFORMS

Amazon AWS offers *Earth on AWS*, hosting petabyte-scale Landsat, Sentinel-2, and NEXRAD archives, and *Amazon Bedrock* for foundation models, enabling high-availability scalable geospatial AI workflows, from ingesting petabyte-scale Earth data to launching custom GenAI applications [18].

Google pairs *Earth Engine* with *Vertex AI* to integrate low-code model building and generative AI directly into geospatial analysis. Earth Engine's APIs connect seamlessly to Vertex AI's Training and Prediction services, while Gemini integration enables advanced multimodal reasoning on satellite imagery for feature extraction, scenario simulation, and collaboration [19][20].

IBM's *TerraMind* framework fuses multimodal Earth observation with weather, IoT, and socio-economic feeds. In partnership with ESA. It applies foundation models for land-cover segmentation and rapid disaster mapping. Use cases and deployment roadmaps are detailed in IBM's *Charting the Future of GeoAI* series [21]. Also refer to Section 4.4.

Microsoft integrates *Azure IoT* and NVIDIA *Omniverse* to build physics-based digital twins, enriched by Copilot for geospatial queries. Through its NASA collaboration, Copilot helps researchers ask natural-language questions, like shoreline erosion forecasts, and receive interactive simulations in seconds [22].

Deloitte's *Geospatial & Al Scenario Planning* platform runs on Google Earth Engine and Vertex Al. It delivers on-demand simulations for risk management, compliance, and sustainability planning. Organizations can pilot scenarios, such as supply-chain disruptions, before integrating insights into enterprise reporting systems [23].

Orbital Insight's *GO Platform* applies deep learning to multi-source imagery for change detection, asset monitoring, and scenario forecasting. The platform ingests commercial and open-access satellite data, then runs convolutional neural nets to flag deforestation, urban sprawl, or flood events. Customers access geospatial intelligence via APIs and dashboards [24].

Hexagon Geospatial's *Smart Digital Reality*™ offers end-to-end digital-twin creation by merging 2D and 3D geospatial data. With Al-driven feature extraction and real-time sensor integration, Hexagon supports industrial, urban, and infrastructure use cases. Its digital-twin solutions simplify city scenario planning to optimize safety, sustainability, and operations [25].

3.2 Innovations in Generative GeoAl

Innovations in Generative GeoAl continue unabated and include breakthrough models, architectures, and applications transforming geospatial analysis globally.

- Foundation models for geospatial reasoning, like Google Deepmind's AlphaEarth
 Foundations that characterize the planet's entire terrestrial land and coastal waters by
 integrating huge amounts of Earth Observation data helping scientists make more informed
 decisions on critical issues like food security, deforestation, urban expansion, and water
 resources [26].
- OpenAl's ChatGPT-5 which includes geospatial capabilities such as natural language spatial queries, multi-modal context understanding, scenario simulation guidance, and integration into field workflows.
- IBM and the European Space Agency (ESA)'s TerraMind, an AI foundation model that explores large sets of data via self-supervised training to deliver accurate answers to questions about climate and nature. Refer to Section 4.4.
- NASA And the University of Maryland's Galileo's model that processes many kinds of satellite data at once and can detect large scale patterns, like glaciers retreating over decades, and short-lived details, like a fishing boat appearing for just a day [27].
- Population Dynamics Foundation Model (PDFM) [28] which forecasts urban growth by merging demographic data with satellite data, especially imagery.
- Remote-sensing large language models (LLMs) integrate image encoders, vector databases, and time-series processors to track ecosystem health and infrastructure integrity.
- Edge analytics and federated architecture ensure low latency and secure data governance.

The potential impact is disruptive. The benefits are significant and strategic such as accelerated time-to-insight and proactive scenario planning, democratized spatial intelligence, cutting reliance on GIS experts, and scalable analytics that integrate with digital twins and mission-critical workflows.

"Queryable Earth" platforms, built on foundation models and cloud services like Amazon AWS, Microsoft's Planetary Computer, Google and IBM, enable enterprises to integrate geospatial reasoning into digital twins and analytics workflows. These systems index satellite imagery and Earth data for real-time insights, enhancing decision-making in climate resilience, supply chains, and urban planning, all without expanding teams or reengineering infrastructure [29].

As Generative GeoAl moves into enterprise use, leaders must address a wide range of operational, ethical, and technical pillars. These considerations ensure reliable, secure, and compliant systems at scale. We outline below key topics to guide strategy and execution:

4 GENERATIVE GEOAl IN ACTION

This section provides example use cases of Generative GeoAI implementations within a digital transformation context.

4.1 CLIMATE RESILIENCE

Generative GeoAl-driven digital twins combine real-time IoT sensor feeds, high-resolution satellite imagery, and detailed urban infrastructure models to forecast flood zones under extreme storms and long-term sea-level rise. Executives might simply ask "Show coastal inundation for a 100-year storm" or "Map flood risk with 1.5 °C sea-level rise" and receive probabilistic depth maps, thermal anomaly overlays, clear visual reports, and ranked mitigation recommendations in minutes instead of months. Urban heat-island simulation layers thermal imagery and land-cover data in foundation models trained on decades of climate records, enabling planners to compare green-roof placements and shaded-corridor designs.

Google's WeatherNext platform [30] and New York City's Climate Ready digital twin initiative are real-world examples that have guided billions in resilience investments and sped decision cycles, making climate adaptation accessible to diverse teams and non-native English speakers alike.

Challenges:

- Aligning heterogeneous data sources with differing formats and quality
- High computational and storage costs for real-time scenario simulation
- Ensuring model accuracy amid incomplete long-term climate records

Benefits:

- · Accelerated, data-driven resilience planning
- Better ROI on adaptation investments
- Simplified stakeholder communication with intuitive visualizations

4.2 DISASTER RESPONSE

Generative GeoAl can automate post-event assessment by comparing pre- and post-disaster imagery with semantic segmentation. Systems can detect collapsed structures, blocked roads, and flooded areas, then generate annotated maps and narrative briefs for emergency managers. Natural-language interfaces answer "Where is most structural damage?" enabling resource deployment in hours, not days.

Below are example use-cases of Generative GeoAl applications in disaster response:

Generative GeoAl automates post-hurricane damage assessment by comparing high-resolution pre- and post-event satellite imagery (NOAA GOES, Sentinel-2) using semantic segmentation. Systems like Esri's pretrained damage-assessment models in ArcGIS Living Atlas process drone and satellite feeds to identify collapsed structures, flooded roads, and debris, then generate annotated maps and natural-language briefs for emergency managers within hours [31].

Mason Grimshaw's Al-driven simulations run thousands of synthetic hurricane scenarios, varying track, intensity, and population exposure, to guide proactive resource staging. Through a "Queryable Earth" interface, decision-makers can ask, "Which districts face >130 km/h winds?" and receive integrated forecasts merged with social-vulnerability indices in real time [32].

The UN-SPIDER GeoAl compendium further documents operational deployments, rapid flood mapping in Bangladesh and wildfire impact analysis in Australia, delivering up to 70 percent faster situational awareness [33].

Challenges:

- Semantic segmentation errors due to cloud cover and low-resolution imagery
- Latency in ingesting live sensor feeds and processing large datasets
- Data privacy and security concerns when handling sensitive location information

Benefits:

- Rapid, accurate damage assessments
- Proactive resource pre-positioning and evacuation planning
- · Automated reporting reduces manual workload

4.3 AGRICULTURE

Generative GeoAl creates digital twins of individual fields by fusing multispectral satellite imagery (e.g., Sentinel-2), in-field IoT sensor feeds, and hyperlocal weather forecasts. For example, Microsoft's FarmBeats platform [34] ingests soil-moisture probes, drone and satellite imagery, and weather station data to flag chlorophyll anomalies, predict yield gaps, and then uses generative models to recommend precise irrigation schedules and nutrient applications within minutes. McKinsey estimates that combining analytical AI with generative AI can unlock \$100 billion in on-the-acre value by optimizing inputs and boosting yields [35].

Several businesses are exploring the benefits of Geo and Generative AI in this field. For instance, Earth Daily Analytics is supporting commodity traders, agribusinesses, food supply chains, and insurers by providing applications for crop monitoring, yield forecasting, supply chain disruptions, and optimized resource allocation.

Challenges:

- Limited labeled training data in under-connected regions
- Complex integration of federated sensor networks with cloud analytics
- Model generalization across diverse crops and geographies

Benefits:

- Precision in resource application reduces waste
- Yield improvements through early stress detection
- Democratized agronomic insights for non-experts

4.4 NATIONAL SECURITY

Generative GeoAI now underpins next-generation surveillance and threat-detection platforms by fusing electro-optical and SAR imagery, signals-intelligence feeds, and open-source text into a single multimodal pipeline. Decision-makers issue natural-language queries such as "Highlight unauthorized base expansions along Sector Alpha", and in minutes receive:

• Geo-referenced anomaly maps pinpointing new constructions or troop movements

- Time-series visualizations that forecast emerging hotspots
- Concise, narrative intelligence briefs linked to secure digital-twin command centers

IBM and the European Space Agency's TerraMind exemplify this approach. As the first any-to-any generative foundation model for Earth observation, TerraMind ingests nine data modalities, from Copernicus Sentinel-1 SAR to land-use vectors, and reasons across them to detect subtle changes and predict future scenarios. It achieves up to 8 % higher accuracy on change-detection benchmarks while using ten times less compute than separate models [36][37].

For broader context on generative AI in defense, see The Cipher Brief's analysis of federal and DoD initiatives to harness LLMs and multimodal AI for mission-critical workflows [38].

Challenges:

- Integrating classified and unclassified data while preserving security protocols
- Ensuring model robustness against adversarial manipulation and disinformation
- Compliance with legal and ethical frameworks for surveillance data use

Benefits:

- Enhanced anomaly detection across domains
- Improved strategic forecasting and timely warnings
- Secure API integration for collaborative intelligence workflows

5 CONCLUSION

As organizations embrace Generative GeoAI, they enter an era of spatial intelligence, merging Earth observation, IoT streams, and digital twins for real-time insights. Decision makers can streamline operations, generate valuable data through sharing, improve risk management, and drive proactive decision-making in climate resilience, disaster response, agriculture, and security. By automating data synthesis and scenario simulation, Generative GeoAI reduces time-to-value and empowers teams to focus on strategic priorities. This synergy builds a base case for scalable, data-driven innovation.

Success needs strong partnerships with innovators, workforce upskilling, open, ethical AI and data rules. Pilot, from synthetic multi-spectral data for precision farming to digital-twin simulations for city planning, provide low-risk paths to prove value. As projects mature, enterprises unlock blue-ocean opportunities, create customer-centric services, and strengthen global collaboration for sustainable impact. Generative GeoAI will fuel your organization's path to resilient, intelligent, and sustainable growth.

6 BIBLIOGRAPHY

[1] ISO 19115: https://www.iso.org/standard/53798.html

[2] Positioning the Future Geospatial Information Ecosystem (UN-GGIM): https://ggim.un.org/meetings/GGIM-committee/15th-session/documents/2025-07_UN-GGIM FutureGeospatialEcosystem.pdf

- [3] Geospatial Data in a World of Generative AI: https://theodi.org/news-and-events/blog/geospatial-data-in-a-world-of-generative-ai/
- [4] Esri Trusted AI (security, privacy, explainability): https://trust.arcgis.com/en/trusted-ai/trusted-ai.htm
- [5] Forrester report on AI ROI metrics: https://www.forrester.com/report/drive-roi-with-ai/
- [6] OGC Standards: https://www.ogc.org/standards/
- [7] ISO/TC 211 Geographic information/Geomatics: https://committee.iso.org/tc211
- [8] "Digital twins and generative AI: A powerful pairing," McKinsey & Company (Apr 11, 2024) https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/digital-twins-and-generative-ai-a-powerful-pairing
- [9] NIST AI Risk Management Framework (incl. adversarial tests): https://www.nist.gov/itl/ai/ai-risk-management-framework
- [10] MITRE ATLAS for adversarial AI attacks: https://atlas.mitre.org/
- [11] UN Biodiversity Lab (Al-driven biodiversity monitoring): https://un-biodiversitylab.org/
- [12] GeoAl Learning Path on Microsoft Learn: https://docs.microsoft.com/learn/paths/geospatial-ai/
- [13] Esri Community: Generative AI on the Geospatial Technology Competency Model https://community.esri.com/t5/education-blog/generative-ai-on-the-geospatial-technology/ba-p/1295471
- [14] PwC: Leveraging GeoAI: A Strategic Approach for Utility Companies (2025) https://www.pwc.com/m1/en/publications/2025/docs/leveraging-geoai-a-strategic.pdf
- [15] DTC Industry Digital Transformation Framework: https://www.digitaltwinconsortium.org/wp-content/uploads/sites/3/2025/05/The-Industry-Digital-Transformation-Framework-Revision-31-2025-05-09.pdf
- [16] OMG JoI Unlocking the Full Value of Enterprise Data Assets: https://www.objectmanagementgroup.org/wp-content/uploads/sites/8/2025/02/JOI_20250204_3_Unlocking_the_Full_Potential_of_Enterprise_Data_Standalone.pdf
- [17] McKinsey From Bytes to Bushels, How Generative AI can shape the future of agriculture: https://www.mckinsey.com/industries/agriculture/our-insights/from-bytes-to-bushels-how-gen-ai-can-shape-the-future-of-agriculture

- [18] Earth on AWS & Amazon Bedrock overview: https://aws.amazon.com/earth-on-aws/
- [19] Google Earth Engine: https://developers.google.com/earth-engine/guides/ml_examples
- [20] Vertex AI: https://cloud.google.com/vertex-ai/generative-ai/docs
- [21] IBM: Terramind: https://www.ibm.com/ibm/environment/terramind
- [22] Microsoft Digital Tin Services: https://azure.microsoft.com/en-us/services/digital-twins
- [23] Deloitte Geospatial AI article: https://www2.deloitte.com/global/en/pages/technology/articles/geospatial-ai.html
- [24] Orbital Insights: https://orbitalinsight.com/products
- [25] Hexagon Geospatial: https://hexagon.com/solutions/digital-twin
- [26] Google Deepmind: https://deepmind.google/discover/blog/alphaearth-foundations-helps-map-our-planet-in-unprecedented-detail/
- [27] NASA Harvest: https://www.nasaharvest.org/news/galileo-is-advancing-nasa-harvests-mission-to-safeguard-our-planet
- [28] Google Geospatial Reasoning: https://research.google/blog/geospatial-reasoning-unlocking-insights-with-generative-ai-and-multiple-foundation-models/
- [29] Queryable Earth: https://www.planet.com/pulse/queryable-earth-combining-satellite-imagery-and-next-gen-ai/
- [30] David Schottlander and Tomer Shekel, "Geospatial Reasoning: Unlocking insights with generative AI and multiple foundation models," Google Research Blog, April 8, 2025 https://research.google/blog/geospatial-reasoning-unlocking-insights-with-generative-ai-and-multiple-foundation-models/
- [31] Esri Pretrained Geospatial AI Models: https://www.esri.com/about/newsroom/arcuser/pretrained-geospatial-ai-models-canstreamline-disaster-response
- [32] Mason Grimshaw: https://www.ioes.ucla.edu/person/mason-grimshaw/
- [33] UN Mapping Disaster Resilience: https://www.un-spider.org/news-and-events/news/mapping-disaster-resilience-geoai-best-practices-un-spider-network
- [34] Microsoft FarmBeats: IoT for Farming https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/?msockid=1ac00a60329d69d93a661c5333b2684c

Generative AI and Geospatial Data

- [35] From bytes to bushels: How gen AI can shape the future of agriculture. McKinsey & Company, June 10, 2024 https://www.mckinsey.com/industries/agriculture/our-insights/from-bytes-to-bushels-how-gen-ai-can-shape-the-future-of-agriculture
- [36] ESA and IBM collaborate on TerraMind https://www.esa.int/Applications/Observing_the_Earth/ESA_and_IBM_collaborate_on_TerraMind
- [37] "Terramind: the new generative AI model for Earth observation," IBM Research Blog https://research.ibm.com/blog/terramind-esa-earth-observation-model
- [38] "Generative AI for National Security," The Cipher Brief https://www.thecipherbrief.com/column_article/generative-ai-for-national-security